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Abstract
The probability that a randomly accelerated particle in two dimensions has not
yet left a simply connected domain A after a time t decays as e−E0t for long
times. The same quantity E0 also determines the confinement free energy per
unit length �f = kBT E0 of a semiflexible polymer in a narrow cylindrical
pore with cross section A. From simulations of a randomly accelerated particle
we estimate the universal amplitude of �f for both circular and rectangular
cross sections.

PACS numbers: 36.20.Ey, 05.10.-a, 05.10.Gg, 05.70.Ce

(Some figures in this article are in colour only in the electronic version)

Consider a long semiflexible polymer with persistence length P fluctuating in a cylindrical
pore with diameter D. In the narrow-pore limit D � P the free energy of confinement per
unit length �f is given by

�f = A©
kBT

P 1/3D2/3
. (1)

This follows from simple scaling or dimensional arguments [1–3], such as that given below.
Similarly, for a pore with a rectangular cross section [3] with edges L1, L2 � P

�f = A�
kBT

P 1/3

(
1

L
2/3
1

+
1

L
2/3
2

)
. (2)

The dimensionless constants A©, A� in equations (1) and (2) are universal numbers,
independent of both macroscopic and microscopic properties of the polymer chain. From
computer simulations Dijkstra et al [2] estimated

A© = 2.46 ± 0.07. (3)
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Figure 1. The curve may be interpreted as a tightly confined semiflexible polymer in a cylindrical
pore with cross section A or as the world line of a particle which is randomly accelerated in two
dimensions and remains in a domain A for a time t .

Solving an integral equation numerically that arises in an exact analytical approach,
Burkhardt [3] obtained

A� = 1.1036. (4)

In the Monte Carlo simulations of Dijkstra et al [2], polymer configurations consistent
with the Boltzmann distribution were generated with a Metropolis algorithm incorporating
detailed balance. In this letter we estimate A©, A� with a precision of about 1% using a
Langevin dynamics approach, which is simple and efficient. Instead of a confined semiflexible
polymer, we simulate a Newtonian particle which is randomly accelerated by Gaussian white
noise in two dimensions. In the narrow-pore or tight-confinement limit these two systems
have equivalent statistical properties, as discussed in [3] and reviewed below. The basic idea,
illustrated in figure 1, is that each of the possible world lines of a particle, which is randomly
accelerated in two dimensions and remains in a domain A for a time t , corresponds to an
allowed configuration of a tightly confined semiflexible polymer in a cylindrical pore or tube
with cross section A.

We now describe the correspondence in more detail. As in [3], polymer configurations
are specified in terms of Cartesian coordinates (x, t) = (x1, x2, t). The t axis is parallel to
the axis of the cylindrical pore, as shown in figure 1. In the narrow-pore limit D � P or
L1, L2 � P , configurations with overhangs are negligible, i.e. x is a single-valued function
of t . The partition function is given by the path integral [3]

Z(x,u; x0,u0; t) =
∫

A
D2x exp

[
− 1

2
P

∫ t

0
dt

(
d2x

dt2

)2]
(5)

where x and u = dx/dt denote the displacement and slope of the polymer at t , and x0 and u0

the same quantities at t = 0. A hard-wall-confining potential is assumed, and the x integration
is limited to the domain A.

The path integral implies the partial differential equation [3–8][
∂

∂t
+ u · ∇x − 1

2P
∇u

2

]
Z(x,u; x0u0; t) = 0 (6)

to be solved with the initial condition

Z(x,u; x0,u0; 0) = δ(x − x0)δ(u − u0). (7)

Since the polymer is confined to the interior of the pore and configurations with a discontinuity
in slope cost an infinite energy, Z(x,u; x0,u0; t) vanishes for u · n > 0 as x approaches a
hard wall. Here n is a vector normal to the wall and directed toward the interior of the pore.
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As in [3] we consider exponentially decaying solutions of equation (6) with the form
ψ(x,u) exp(−Et). The eigenfunctions ψ and eigenvalues En satisfy[

u · ∇x − 1

2P
∇u

2 − En

]
ψn(x,u) = 0 (8)

where ψ(x,u) also vanishes for u · n > 0 as x approaches the pore wall. In the long-polymer
limit the partition function and the confinement free energy per unit length are given by

Z(x,u; x0,u0; t) ≈ const × ψ0(x,u)ψ0(x0,−u0)e
−E0t t → ∞ (9)

�f

kBT
= E0(P,D) (10)

for a pore with a circular cross section of diameterD, whereE0 is the smallest of the eigenvalues
En.

The P and D dependence in equation (1) may be derived from (10) by making the scale
change x = αx′, u = βu′ in (8), where α and β are arbitrary positive constants. This leads
to the scaling property

En(P,D) = α−1βEn(α
−1β3P, α−1D) (11)

of the eigenvaues. Setting α = D and β = P−1/3D1/3 in equation (11) and substituting the
result in (10), we obtain

�f

kBT
= E0(1, 1)

P 1/3D2/3
. (12)

This expression is entirely consistent with equation (1) and implies

A© = E0(1, 1). (13)

Similarly, for a pore with a rectangular cross section

2A� = E0(1, 1, 1) (14)

where E0(P, L1, L2) denotes the smallest eigenvalue in equation (8) for a rectangular domain
with edges L1, L2. Equations (13) and (14) allow us to determine the universal amplitudes
A© and A� from calculations with P = D = L1 = L2 = 1.

For the rectangular domain equation (8) has separable eigenfunctions ψm,n(x,u) =
φm(x1, u1)φn(x2, u2), with eigenvalues Em,n = E(1 dim)

m (P, L1) + E(1 dim)
n (P, L2), where[

u
∂

∂x
− 1

2P

∂2

∂u2
− E(1 dim)

m (P, L)

]
φm(x, u) = 0. (15)

Here 0 < x < L, andφ(x, u) vanishes for x = 0, u > 0 and x = L, u < 0. Thus equation (14)
may be rewritten as

A� = E
(1 dim)
0 (1, 1) (16)

in terms of the smallest eigenvalue of (15) for P = L = 1. The earlier numerical result
for A�, noted in equation (4), was obtained in [3] by converting (15) to an integral equation,
determining the smallest eigenvalue numerically, and substituting the result in (16).

Now consider a particle which is randomly accelerated in the d-dimensional space
(x1, . . . , xd) by Gaussian white noise with zero mean according to

d2xi

dt2
= ξi(t) 〈ξi(t)ξj (t ′)〉 = P−1δij δ(t − t ′). (17)

The probability density in phase space (x,u) that the particle remains in the domain A for a
time t while the position and velocity evolve from (x0,u0) to (x,u) satisfies a Fokker–Planck
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equation [8] with exactly the same form (6), initial condition (7), and boundary condition at
the boundary of A. Thus the probability density of the randomly accelerated particle equals
the partition function of a semiflexible polymer in a pore with cross section A and decays as
exp(−E0t) for long times, as in equation (9).

To estimate A� using equation (16), we simulated a randomly accelerated particle in one
spatial dimension. From simulations in two dimensions we obtained a second estimate of A�
based on (14) and a prediction for A© from (13). The simulation routine, similar to that in [9],
will now be described briefly.

In an unbounded d-dimensional space the exact solution of the Fokker–Planck equation (6)
with initial condition (7) and with P = 1 is given by [4, 10]

Zfree(x,u; x0,u0; t) =
(

31/2

πt2

)d

× exp

{
− 6

t3

[
(x − x0 − u0t) · (x − x0 − ut) +

1

3
(u − u0)

2t2

]}
. (18)

Trajectories with the probability distribution Zfree(xn+1,un+1; xn,un;�n+1) given by (18) are
generated using the algorithm

xn+1 = xn + un�n+1 + en �
3/2
n+1

(
3−1/2sn+1 + rn+1

)
(19)

un+1 = un + en 2�1/2
n+1 rn+1 (20)

where xn and un are the position and velocity of the particle at time tn, and �n+1 = tn+1 − tn.
The quantity en is a unit vector that points either along the positive x1 axis, the positive x2

axis, . . . , or the positive xd axis with equal probability, and rn and sn are independent Gaussian
random numbers satisfying

〈rn〉 = 〈sn〉 = 0 〈r2
n〉 = 〈s2

n〉 = 1. (21)

In the absence of boundaries there is no time-step error in the above algorithm, i.e. the
�n may be chosen arbitrarily. Close to the boundaries small time steps are needed. As in [9]
we performed our simulations with

�n+1 = 10−5 + 10−1Dn (22)

where Dn is the distance from the particle to the closest point of the domain boundary at time
tn. This time step fulfils a reliability criterion discussed in [9].

Some sample simulation results are shown in figure 2. The quantity Q(t) is the probability
that a particle with a random initial position in a one- or two-dimensional domain and with
initial velocity zero, which is randomly accelerated according to equation (17) with P = 1,
has not yet left the domain after a time t . The curves labelled ‘circle’, ‘square’ and ‘interval’
refer to a circular domain of diameter D = 1, a square with edges L1 = L2 = 1, and a
one-dimensional interval of length L = 1. Each of the curves is based on 10 000 independent
trajectories.

Since Q(t) = ∫
ddx

∫
ddu

∫
ddx0 Z(x,u; x0, 0; t), it decays as e−E0t for long times,

with the same decay constant E0 as Z(x,u; x0,u0; t) in equation (9). We determined E0

for the circular, square and one-dimensional domains by fitting Q(t) for long times with an
exponential function. A surprising result, shown in figure 2, is that the curves for the circular
and square domains practically coincide when plotted versus E0t instead of t .

We also estimated E0 for circular, square and one-dimensional domains from trajectories
that all begin at the the centre of the domain with initial velocity zero. The results are consistent
with the results for random initial positions but have a somewhat greater statistical uncertainty.
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Figure 2. Probability Q(t) that a particle with random initial position in a one- or two-dimensional
domain and initial velocity zero, which is randomly accelerated according to equation (17) with
P = 1, has not yet left the domain after a time t . The curves labelled ‘circle’ (full curve), ‘square’
(broken curve), and ‘interval’ (full curve) correspond to a circular domain with diameter 1, a
square domain with edge 1, and a one-dimensional interval with length 1. For the three curves
E0 = 2.375, 2.199, 1.108, respectively. The chain curve represents a pure exponential decay
e−E0 t .

Combining our best estimates of E0 with equations (13), (14) and (16), we obtain

A© = 2.375 ± 0.013 (23)

A� = 1.108 ± 0.013. (24)

The result (23) for A© is somewhat lower than the estimate (3) of Dijkstra et al [2] and has
a smaller statistical uncertainty. The result (24) for A� in the equation is consistent with the
value (4) obtained by Burkhardt from the numerical solution of an exact integral equation [3].
Bundschuh [11] has also confirmed (4) to within a few percent with a numerical transfer matrix
approach [12] for semiflexible polymers.

In summary, we have found a simple and efficient simulational procedure for calculating
the confinement free energy of a semiflexible polymer in a narrow cylindrical pore with cross
section A. We use the equivalent statistical properties of a Newtonian particle which is
randomly accelerated by Gaussian white noise in two dimensions. The probability that the
particle has not yet left a domain A in a time t decays as e−E0t . We determine E0 from our
simulations and then interpret it, following equation (10), in terms of the polymer free energy.
We emphasize that the equivalence between the statistics of the polymer and the randomly
accelerated particle is asymptotically exact in the limit in which the pore diameter is much
smaller than the polymer persistence length.
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